新闻中心
新闻中心与新手教程
新闻中心与新手教程
发布时间:2024-10-12 01:11:44
为您详细解释hadoop的mapreduce分布式计算框架,以及相关的故障排查步骤。mapreduce是hadoop生态系统中的核心组件之一,用于大规模数据处理。让我们深入探讨它的工作原理、实现步骤和常见问题的解决方法。
mapreduce是一个分为两个主要阶段的编程模型:map阶段和reduce阶段。
1.1 map阶段:
1.2 shuffle和sort阶段:
1.3 reduce阶段:
graph td
a[input] --> b[split]
b --> c[map]
c --> d[shuffle]
d --> e[sort]
e --> f[reduce]
f --> g[output]
style c fill:#f9f,stroke:#333,stroke-width:2px
style f fill:#f9f,stroke:#333,stroke-width:2px
2.1 编写map函数:
public static class map extends mapper
private final static intwritable one = new intwritable(1);
private text word = new text();
public void map(longwritable key, text value, context context) throws ioexception, interruptedexception {
string line = value.tostring();
stringtokenizer tokenizer = new stringtokenizer(line);
while (tokenizer.hasmoretokens()) {
word.set(tokenizer.nexttoken());
context.write(word, one);
}
}
}
2.2 编写reduce函数:
public static class reduce extends reducer
public void reduce(text key, iterable
throws ioexception, interruptedexception {
int sum = 0;
for (intwritable val : values) {
sum += val.get();
}
context.write(key, new intwritable(sum));
}
}
2.3 配置job:
public static void main(string[] args) throws exception {
configuration conf = new configuration();
job job = job.getinstance(conf, "word count");
job.setjarbyclass(wordcount.class);
job.setmapperclass(map.class);
job.setcombinerclass(reduce.class);
job.setreducerclass(reduce.class);
job.setoutputkeyclass(text.class);
job.setoutputvalueclass(intwritable.class);
fileinputformat.addinputpath(job, new path(args[0]));
fileoutputformat.setoutputpath(job, new path(args[1]));
system.exit(job.waitforcompletion(true) ? 0 : 1);
}
3.1 使用combiner: combiner在map端进行局部聚合,减少网络传输:
job.setcombinerclass(reduce.class);
3.2 自定义分区器: 控制key到reducer的映射:
public static class custompartitioner extends partitioner
@override
public int getpartition(text key, intwritable value, int numpartitions) {
return (key.hashcode() & integer.max_value) % numpartitions;
}
}
job.setpartitionerclass(custompartitioner.class);
3.3 设置适当的reducer数量:
job.setnumreducetasks(10);
4.1 查看作业状态: 使用hadoop web ui或命令行:
hadoop job -status <job_id>
4.2 检查作业日志: 在jobtracker web ui或hdfs中查看日志:
yarn logs -applicationid <application_id>
4.3 常见问题及解决方法:
a) 数据倾斜:
b) out of memory错误:
c) 慢任务:
5.1 二次排序: 实现自定义writablecomparable来控制reduce阶段的排序:
public class compositekey implements writablecomparable
private text firstkey;
private intwritable secondkey;
// 构造函数, getter, setter 等
@override
public int compareto(compositekey o) {
int cmp = this.firstkey.compareto(o.firstkey);
if (cmp != 0) {
return cmp;
}
return this.secondkey.compareto(o.secondkey);
}
// write 和 readfields 方法实现
}
5.2 链式mapreduce: 多个mapreduce作业串联执行:
job job1 = job.getinstance(conf, "job 1");
// 配置job1
job job2 = job.getinstance(conf, "job 2");
// 配置job2
job2.adddependingjob(job1);
jobcontrol jobcontrol = new jobcontrol("jobchain");
jobcontrol.addjob(job1);
jobcontrol.addjob(job2);
thread jobcontrolthread = new thread(jobcontrol);
jobcontrolthread.start();
while (!jobcontrol.allfinished()) {
thread.sleep(500);
}
5.3 计数器使用: 在map和reduce中使用自定义计数器:
public static enum customcounter {
malformed_records,
processed_records
}
// 在map或reduce方法中
context.getcounter(customcounter.processed_records).increment(1);
6.1 inputformat选择: 根据数据特性选择合适的inputformat,如textinputformat, sequencefileinputformat等。
6.2 压缩: 使用压缩减少i/o:
fileoutputformat.setcompressoutput(job, true);
fileoutputformat.setoutputcompressorclass(job, gzipcodec.class);
6.3 jvm重用: 对于小作业,可以重用jvm:
这些详细的步骤和高级特性应该能帮助您更深入地理解和应用hadoop mapreduce框架。
感谢提供:05互联